Mutation and cloning of eryG, the structural gene for erythromycin O-methyltransferase from Saccharopolyspora erythraea, and expression of eryG in Escherichia coli.

نویسندگان

  • T J Paulus
  • J S Tuan
  • V E Luebke
  • G T Maine
  • J P DeWitt
  • L Katz
چکیده

A mutant strain derived by chemical mutagenesis of Saccharopolyspora erythraea (formerly known as Streptomyces erythreus) was isolated that accumulated erythromycin C and, to a lesser extent, its precursor, erythromycin D, with little or no production of erythromycin A or erythromycin B (the 3"-O-methylation products of erythromycin C and D, respectively). This mutant lacked detectable erythromycin O-methyltransferase activity with erythromycin C, erythromycin D, or the analogs 2-norerythromycin C and 2-norerythromycin D as substrates. A 4.5-kilobase DNA fragment from S. erythraea originating approximately 5 kilobases from the erythromycin resistance gene ermE was identified that regenerated the parental phenotype and restored erythromycin O-methyltransferase activity when transformed into the erythromycin O-methyltransferase-negative mutant. Erythromycin O-methyltransferase activity was detected when the 4.5-kilobase fragment was fused to the lacZ promoter and introduced into Escherichia coli. The activity was dependent on the orientation of the DNA relative to lacZ. We have designated this genotype eryG in agreement with Weber et al. (J.M. Weber, B. Schoner, and R. Losick, Gene 75:235-241, 1989). It thus appears that a single enzyme catalyzes all of the 3"-O-methylation reactions of the erythromycin biosynthetic pathway in S. erythraea and that eryG codes for the structural gene of this enzyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic modulation of the overexpression of tailoring genes eryK and eryG leading to the improvement of erythromycin A purity and production in Saccharopolyspora erythraea fermentation.

Erythromycin A (Er-A) is the most potent and clinically important member in the Er family produced by Saccharopolyspora erythraea. Er-B and Er-C, which are biologically much less active and cause greater side effects than Er-A, serve as the intermediates for Er-A biosynthesis and impurities in fermentation processes of many industrial strains. In this study, systematical modulation of the amoun...

متن کامل

Organization of a cluster of erythromycin genes in Saccharopolyspora erythraea.

We used a series of gene disruptions and gene replacements to mutagenically characterize 30 kilobases of DNA in the erythromycin resistance gene (ermE) region of the Saccharopolyspora erythraea chromosome. Five previously undiscovered loci involved in the biosynthesis of erythromycin were found, eryBI, eryBII, eryCI, eryCII, and eryH; and three known loci, eryAI, eryG, and ermE, were further ch...

متن کامل

Transcriptional organization of the erythromycin biosynthetic gene cluster of Saccharopolyspora erythraea.

The transcriptional organization of the erythromycin biosynthetic gene (ery) cluster of Saccharopolyspora erythraea has been examined by a variety of methods, including S1 nuclease protection assays, Northern blotting, Western blotting, and bioconversion analysis of erythromycin intermediates. The analysis was facilitated by the construction of novel mutants containing a S. erythraea transcript...

متن کامل

Cloning, characterization, and high-level expression in Escherichia coli of the Saccharopolyspora erythraea gene encoding an acyl carrier protein potentially involved in fatty acid biosynthesis.

The erythromycin A-producing polyketide synthase from the gram-positive bacterium Saccharopolyspora erythraea (formerly Streptomyces erythraeus) has evident structural similarity to fatty acid synthases, particularly to the multifunctional fatty acid synthases found in eukaryotic cells. Fatty acid synthesis in S. erythraea has previously been proposed to involve a discrete acyl carrier protein ...

متن کامل

Identification and Characterization of a New Erythromycin Biosynthetic Gene Cluster in Actinopolyspora erythraea YIM90600, a Novel Erythronolide-Producing Halophilic Actinomycete Isolated from Salt Field

Erythromycins (Ers) are clinically potent macrolide antibiotics in treating pathogenic bacterial infections. Microorganisms capable of producing Ers, represented by Saccharopolyspora erythraea, are mainly soil-dwelling actinomycetes. So far, Actinopolyspora erythraea YIM90600, a halophilic actinomycete isolated from Baicheng salt field, is the only known Er-producing extremophile. In this study...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 172 5  شماره 

صفحات  -

تاریخ انتشار 1990